

Jeff Blackmon (LSU)

Core-Collapse Supernovae

Stars > 10 solar masses Higher gravity Faster burning stages Less mass loss C burning O burning In rapid succession Si burning H,He He ONeMa

Weak interaction plays an important role

- >> Electron capture affects formation of shock wave.
- > Neutrino interactions help drive the explosion.
- Neutrino induced reactions alter nucleosynthesis.
- > Weak rates are not well understood:
 - GT strength distributions
 - First-forbidden contribution

Calculations favor *proton-rich* ejecta

Müller, Janka et al.

tu	90Ru	91Ru	92Ru	93Ru	94Ru	95Ru	96Ru 6%	97Ru	98Ru	9:
ře.	89Tc	90Tc	91Tc	92Tc	93Tc	94Tc	95Tc	96Tc	97Tc	9
fo	88Mo	89Mo	90Mo	91Mo	92Mo 15 %	93Mo	94Mo	95Mo	96Mo	97
ъ	87Nb	88Nb	89Nb	90Nb	91Nb	92Nb	93Nb	94Nb	95Nb	9
ir	86Zr	872 r	88Zr	89 Zr	90Zr	91Zr	92Zr	93Zr	94Zr	9
Y	85Y	86Y	87Y	88Y	89¥	90Y	917	927	93Y	9
Sr	84Sr	85Sr	86\$r	87Sr	88\$r	89\$r	90Sr	918r	92Sr	9

- Nuclear statistical equilibrium favors production of ⁵⁶Ni
- Weak interactions can produce neutrons boosting masses produced

Fröhlich et al., PRL (2006).

- Possible additional source for intermediate mass elements?
- Contributes to anomalous abundance of light "p" isotopes?

Weak interaction rates

Great improvements in weak rates from theory (nuclear shell model calculations)

See Langanke & Martinez-Pinedo, RMP (2003)

- Gamow-Teller strengths can be determined from charge exchange reactions
- (p,n) or (n,p) measurements test shell model predictions and effective interactions
- Some studies so far with stable nuclei
- First measurements now with radioactive nuclei
- (p,n) measurements using Low-Energy Neutron Detector (LENDA) developed with the S800 and radioactive beams.

Sasano et al., PRL **107** (2011).

Stellar Explosions in Binary Systems

- ➤ Most stars are in binary systems
 - Some close enough to interact (transfer mass)
- Thermonuclear explosions can occur in such systems
- Driven by nuclear reactions on stable and proton-rich nuclei
- \gg Higher T \rightarrow higher σ
 - → Novae
 - White dwarf
 - ~40/yr in our Galaxy
 - Recurrance times?
 - → X-ray bursts
 - On surface of neutron star
 - Frequently recur (hours → days)
 - Influences evolution of system

- → Type la Supernovae
 - White dwarf + ?
 - SD? DD? Both?!
 - Star completely destroyed
 - Fe-group production in Galaxy (late times)

Discovering Novae

- > The most common stellar explosion
 - About 3 dozen per year in Milky Way
- ➤ Characterized by increase in brightness of 8-15 magnitudes (10³-106 times)
 - Peak reached in < 24 h
 - Much slower decay (weeks)
 - Recur after t >1000 yr?
 - Discovered by amateurs
 - 100's observers networking around the world
 - · Usually discovered photographically
- ➤ Nova Ophiuchi 2006 No. 2
 - Discovered April 6, 2006
 - Peter Williams, Sydney Australia
 - Visual discovery (Magnitude 10)
 - Peak brightness 9.2
 - Confirmation:
 - William Liller (Chile)
 - Tom Krajci (US)
 - Jaciej Reszelski (Poland)

- RS Oph is a recurrent novae.
 - Few observed but many more possible.
 - Distribution of recurrence times unknown

Nova nucleosynthesis

> Complex hydrodynamical models required

- Mulitdimensional models using adaptive coordinate mesh
- Nuclear physics typically decoupled or simplified
- Nucleosynthesis tracked in detail in a post-processing approach
- Frontier is now coupling of better nuclear physics with more realistic hydrodynamical models

- · Elements as heavy as sulfur
- High ejected mass
- → Substantial mixing of accreted material with core?

Many nova reactions have been recently determined

²¹Na(p,γ)²²Na with DRAGON

2.6 yr half-life and 1.27 MeV gamma ray make 22 Na a prime observational target In 1999: 21 Na(p, γ) 22 Mg rate uncertain by >10 5 x (Jose, Coc, Hernanz, ApJ520).)

SEparator for CApture Reactions (SECAR)

Being developed for NSCL/FRIB by MSU, Notre Dame, ORNL, LSU, Mines, . . .

- Next-generation EM separator for direct measurements of capture reactions at ReA3/FRIB
- Two Wien filter design provides high mass resolution and suppression of scattered beam
 - Phased approach proposed that allows for initial experiments at reduced cost
 - 2nd WF required for higher mass beams – to be proposed to NSF
- Long development time
 - Must start soon to be ready for initial experiments at FRIB

Indirect approaches – ²⁵Al(p,γ)²⁶Si

 One of most important rates for understanding ²⁶Al in novae

 Rates depends on properties of low-lying s-wave resonances (2⁺ and 3⁺ states in ²⁶Si)

Type la Supernovae

Nuclear physics of Type Ia

> Most important nuclear physics is fusion of C,O, Ne nuclei

$$\gg^{12}C+^{12}C \rightarrow$$

$$\gg$$
¹²C+¹⁶O \rightarrow

- ➤ Measurements needed to lower energies
- ➤ Resonances could contribute in a few cases

X-ray vision

RXTE

Rossi X-ray Timing Explorer

The RXTE All-Sky Monitor Movie

http://heasarc.gsfc.nasa.gov/xte_weather/

- > Over 100 sources *in the Milky Way*
 - Do not confuse with Gamma ray-bursts
- ➤ Recur on a semi-regular time scale
- > Thermonuclear explosion on surface of a neutron star
- > Observations provide crucial insights into neutron star properties

Nuclear reactions drive explosion

- Reaction rates are crucial
 - · Thermonuclear events
 - Energy generation (light curve)
 - Abundances (spectra)
 - Evolution of system
 - (p,γ) and (α,p) reactions w/ large uncertainties
- ➤ Not all reactions are equally important
 - Sensitivity studies help to identify reactions that are likely most important
 - Caveat: Depends on assumptions of astrophysical model

Reaction	Models affected
$^{15}{\rm O}(\alpha, \gamma)^{19}{\rm Ne}^{a}$	K04, K04-B1, K04-B6
$^{18}{\rm Ne}(\alpha, {\rm p})^{21}{\rm Na}^{\rm a}$	K04-B1, K04-B6
$^{22}{\rm Mg}(\alpha, {\rm p})^{25}{\rm Al}$	F08
23 Al(p, γ) 24 Si	K04-B1
$^{24}{ m Mg}(lpha,{ m p})^{27}{ m Al^a}$	K04-B2
$^{28g}Al(p, \gamma)^{27}Si^a$	F08
${}^{28}Si(\alpha, p){}^{31}P^{a}$	K04-B4
${}^{30}S(\alpha, p){}^{33}Cl$	K04-B4, K04-B5
$^{31}Cl(p, \gamma)^{32}Ar$	K04-B3
³² S(α, p) ³⁵ Cl	K04-B2
³⁵ Cl(p, γ) ³⁶ Ar ^a	K04-B2
⁵⁶ Ni(α, p) ⁵⁹ Cu	S01
⁵⁰ Cu(p, γ) ⁶⁰ Zn	S01
65 A _/ \ 860_	Vot Vot Da Vot Da

Direct Studies of (α, p) Reactions

- (α,p) reactions can be studied directly:
 - radioactive ion beams
 - ⁴He gas target
 - inverse kinematics techniques
- HELIOS with in-flight beams at ANL
 - gas target
 - high rate ionization chamber for coincidence measurement
- ${}^{14}C(d,p){}^{15}C$ commissioning run with full setup:

(α,p) with active gas target

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

Resonance energies via (p,d) reactions & fast beams at NSCL

Conclusion

Nuclear physics is central to answering some challenging questions related to astrophysics:

- What are the origins of the heavy elements?
- What are the progenitors of Type Ia supernovae?
- What is the mechanism involved in core collapse supernovae?
- What is the evolution of interacting binary systems?
- What are the properties of neutron stars?

New nuclear data and astrophysical observations are the keys to solving these cosmic questions